

Features:

■ Non-lubrication:
Designs of oil-filled alloy.special housing and bushing provide the needed self-lubrication of piston rod.

\square High quality-long service life:

Hard anodized aluminum cylinder tubes resist corrosion and abrasion.

- Non-standard type:

Non-standard type is also available. For example, Stroke out of specification, dust cap, rod front end dimension variation etc.

Cylinder mountings:
Available with a comprehensive selection of mountings for fixed or flexible installation.

Table for standard stroke

Tube I.D.	Stroke(mm)	
$\phi 40$	$50,75,100,125,150,175,200,250,300,350,400,450,500$	
$\phi 50,63$	\uparrow	600
$\phi 80,100$	\uparrow	600,700
$\phi 125,150$	\uparrow	$600,700,800,900,1000$
$\phi 200$	\uparrow	$600,700,800,900,1000,1500$

Model	MCQA				
Tube I.D. (mm)	$40,50,63$	80,100	125	150	200
Medium	Air				
Operating pressure range	$0.5 \sim 9.9 \mathrm{kgf} / \mathrm{cm}^{2}$				
Proof pressure	$15 \mathrm{kgf} / \mathrm{cm}^{2}$				
Ambient temperature	$-5 \sim+60{ }^{\circ} \mathrm{C}$ (No freezing)				
Sensor switch	RCA				
Sensor switch holder	HV2	HV4	PM14	PM16	HA5

Order example:

21

27

| Code | |
| ---: | :---: |
| Tube I.D. | A | $\mathbf{A A}$ | $\mathbf{A B}$ | $\mathbf{A C}$ | $\mathbf{A D}$ | $\mathbf{A E}$ | $\mathbf{A F}$ | $\mathbf{A R}$ | $\mathbf{A S}$ | \mathbf{B} | $\mathbf{B 1}$ | $\mathbf{B 2}$ | \mathbf{C} | $\mathbf{D D}$ | \mathbf{E} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{J} | \mathbf{K} | \mathbf{L} | $\mathbf{N B}$ | \mathbf{O} | \mathbf{R} |
| 40 | 30 | 21 | 18 | 12 | 7 | $\mathrm{M} 12 \times 1.25$ | 30 | 7 | 19 | 84 | 14 | 22 | 21 | PT $1 / 4$ | $\mathrm{M} 14 \times 1.5$ | 16 | 32 | 11 | 3 | 26 | 13 | 8 | 40.5 | 8 |
| 50 | 35 | 23 | 18 | 15 | 10 | $\mathrm{M} 16 \times 1.5$ | 40 | 8 | 24 | 90 | 17 | 27 | 23 | PT $3 / 8$ | $\mathrm{M} 18 \times 1.5$ | 20 | 40 | 11 | 3 | 28 | 14 | 0 | 48 | 11 |
| 63 | 35 | 23 | 18 | 15 | 10 | $\mathrm{M} 16 \times 1.5$ | 40 | 8 | 24 | 98 | 17 | 27 | 23 | PT $3 / 8$ | $\mathrm{M} 18 \times 1.5$ | 20 | 40 | 11 | 3 | 30 | 15 | 0 | 59 | 11 |
| 80 | 40 | 33 | 24 | 20 | 14 | $\mathrm{M} 22 \times 1.5$ | 50 | 13 | 32 | 116 | 22 | 32 | 31 | PT $1 / 2$ | $\mathrm{M} 22 \times 1.5$ | 25 | 45 | 15 | 4 | 34 | 17 | 0 | 74 | 13 |
| 100 | 40 | 33 | 24 | 20 | 14 | $\mathrm{M} 22 \times 1.5$ | 50 | 13 | 32 | 126 | 27 | 36 | 32 | PT $1 / 2$ | $\mathrm{M} 26 \times 1.5$ | 30 | 52 | 15 | 5 | 37 | 18.5 | 0 | 90 | 14 |

Code Tube I.D.	\mathbf{S}	$\mathbf{U C}$	$\mathbf{U D}$	\mathbf{X}	\mathbf{Z}	$\mathbf{Z B}$	$\mathbf{Z M}$	$\mathbf{Z N}$	$\mathbf{Z P}$	$\mathbf{Z Q}$
40	$\mathrm{M} 8 \times 1.25$	4	12	58	138	105	126	186	123	174
50	$\mathrm{M} 8 \times 1.25$	4	12	66	151	113	136	206	131	189
63	$\mathrm{M} 8 \times 1.25$	4	12	80	159	121	144	214	139	197
80	$\mathrm{M} 12 \times 1.75$	4	15	100	191	147	178	258	171	244
100	$\mathrm{M} 12 \times 1.75$	4	15	118	203	158	190	270	182	255

MCQA
B

FA

Code Tube I.D.	A	E	FB	LH	LL	LM	LR	LS	LT	LX	LY	ZT
40	30	M14 $\times 1.5$	9	40	27	13	42	58	3.2	69	138	132
50	35	$\mathrm{M} 18 \times 1.5$	9	45	27	13	50	66	3.2	78	144	140
63	35	$\mathrm{M} 18 \times 1.5$	11.5	50	34	16	59	80	4.5	90	166	155
80	40	$\mathrm{M} 22 \times 1.5$	14	65	44	16	76	100	6	115	204	191
100	40	$\mathrm{M} 26 \times 1.5$	14	75	43	17	92	118	6	134	212	201

Code	A	E	F	FB	FD	FF	FR	FT	FU	FX	ZF
Tube I.D.	A	M14 1.5	12	9	9	80	42	3.2	100	58	99
40	30	M									
50	35	$\mathrm{M} 18 \times 1.5$	12	9	11	90	50	3.2	110	66	105
63	35	$\mathrm{M} 18 \times 1.5$	15	11.5	8	105	59	4.5	130	80	116

FAC
Note: Applicable to the stroke over 500 mm

STANDARD CYLINDERS

FB

Coode	A	E	C	F	FB	FF	FR	FT	FU	FX	ZF
Tube I.D.	F	$\mathbf{M} 14 \times 1.5$	21	12	9	80	42	3.2	100	58	117
50	35	$\mathrm{M} 18 \times 1.5$	23	12	9	90	50	3.2	110	66	125
63	35	$\mathrm{M} 18 \times 1.5$	23	15	11.5	105	59	4.5	130	80	136

FBC

Note: Applicable to the stroke over 500 mm

$\begin{array}{l\|} \hline \text { Code } \\ \text { Tube I.D. } \\ \hline \end{array}$	A	C	E	F	FB	FF	FR	FU	FX	ZF
40	30	21	M14 $\times 1.5$	12	9	80	42	100	65	117
50	35	23	$\mathrm{M} 18 \times 1.5$	12	9	90	50	110	73	125
63	35	23	$\mathrm{M} 18 \times 1.5$	15	11.5	105	59	130	84	136
80	40	31	$\mathrm{M} 22 \times 1.5$	18	14	130	76	160	108	165
100	40	32	M 26×1.5	18	14	150	92	180	124	176

CA

$\begin{aligned} & \hline \text { Code } \\ & \text { Tube I.D. } \\ & \hline \end{aligned}$	A	CA	CD	CL	CM	CR	E	0	T	X	ZT
40	30	$15^{-0.1}$	$10^{\text {H10 }}$	30	18	10	M14×1.5	40.5	5	58	135
50	35	$18^{-0.1}$	12^{H10}	35	22	12	$\mathrm{M} 18 \times 1.5$	48	5	66	148
63	35	$25^{-0.1}$	16^{H10}	40	27	16	$\mathrm{M} 18 \times 1.5$	59	5	80	161
80	40	$31.5_{-0.3}^{-0.1}$	$20^{\text {H10 }}$	48	30	20	$\mathrm{M} 22 \times 1.5$	74	7.5	100	195
100	40	$35.5_{-0.3}^{-0.1}$	25^{H10}	58	38	25	M 26×1.5	90	7.5	118	216

CB

$\begin{gathered} \hline \text { Code } \\ \text { Tube I.D. } \\ \hline \end{gathered}$	A	CB	CD	CE	CL	CM	CR	E	0	T	X	ZT
40	30	$15{ }^{+0.3}$	10^{H10}	29.5	30	18	10	M14 $\times 1.5$	40.5	5	58	135
50	35	$18{ }^{+} \begin{aligned} & +0.3 \\ & +0.1\end{aligned}$	$12^{\text {H10 }}$	38	35	22	12	$\mathrm{M} 18 \times 1.5$	48	5	66	148
63	35	$25^{\substack{+0.3 \\+0.1}}$	16^{H10}	49	40	27	16	$\mathrm{M} 18 \times 1.5$	59	5	80	161
80	40	$31.5_{+0.1}^{+0.3}$	$20^{\text {H10 }}$	59	48	30	20	$\mathrm{M} 22 \times 1.5$	74	7.5	100	195
100	40	$35.5_{+0.1}^{+0.3}$	$25^{\text {H10 }}$	64	58	38	25	M 26×1.5	90	7.5	118	216

MCQA $_{\phi 40-\phi 100}$

TC

Code Tube I.D.	\mathbf{A}	E	TD	TF	TJ	TK	TL	TT	TU	TX	ZB
40	30	$\mathrm{M} 14 \times 1.5$	$15^{\text {e8 }}$	63	42	22	16	85	117	58	105
50	35	$\mathrm{M} 18 \times 1.5$	$15^{\text {e8 }}$	68	45	22	16	95	127	67	113
63	35	$\mathrm{M} 18 \times 1.5$	$18^{\text {e8 }}$	72	49	28	19	110	148	82	121
80	40	$\mathrm{M} 22 \times 1.5$	$25^{\text {e8 }}$	89	58	34	26	140	192	102	147
100	40	$\mathrm{M} 26 \times 1.5$	$25^{\text {e8 }}$	95	63	40	26	162	214	122	158

TA

$\begin{gathered} \text { Code } \\ \text { Tube I.D. } \end{gathered}$	A	E	TD	TF	without magnet		magnet		TK	TL	TT	TU	TX
					TJ	ZB	TJ	ZB					
40	30	M14×1.5	$15^{\text {e8 }}$	60	45	105	75	135	22	16	85	117	58
50	35	$\mathrm{M} 18 \times 1.5$	$15^{\text {e8 }}$	64	49	113	79	143	22	16	95	127	67
63	35	$\mathrm{M} 18 \times 1.5$	$18^{\text {e8 }}$	69	52	121	82	151	28	19	110	148	82
80	40	M 22×1.5	$25^{\text {e8 }}$	85	62	147	102	187	34	26	140	192	102
100	40	M26 $\times 1.5$	$25^{\text {e8 }}$	92	66	158	106	198	40	26	162	214	122

MCQA $_{\phi 40-\phi 100}$
STANDARD CYLINDERS

TB

$\underset{\text { Tube I.D. }}{\text { Code }}$	A	E	TD	without magnet		magnet		TJ	TK	TL	TT	TU	TX
				TF	ZB	TF	ZB						
40	30	M14×1.5	$15^{\text {e8 }}$	66	105	96	135	39	22	16	85	117	58
50	35	$\mathrm{M} 18 \times 1.5$	$15^{\text {e8 }}$	72	113	102	143	41	22	16	95	127	67
63	35	$\mathrm{M} 18 \times 1.5$	$18^{\text {e8 }}$	75	121	105	151	46	28	19	110	148	82
80	40	$\mathrm{M} 22 \times 1.5$	$25^{\text {e8 }}$	93	147	133	187	54	34	26	140	192	102
100	40	M 26×1.5	$25^{\text {e8 }}$	98	158	138	198	60	40	26	162	214	122

SDS

Stroke over 1000 mm

Code Tube I.D.	A	E	TF	TJ	TK	TX	ZB
40	30	$\mathrm{M} 14 \times 1.5$	63	42	22	58	105
50	35	$\mathrm{M} 18 \times 1.5$	68	45	22	67	113
63	35	$\mathrm{M} 18 \times 1.5$	72	49	28	82	121
80	40	$\mathrm{M} 22 \times 1.5$	89	58	34	102	147
100	40	$\mathrm{M} 26 \times 1.5$	95	63	40	122	158

11

$\begin{aligned} & \text { Code } \\ & \text { Tube I.D. } \end{aligned}$	A	B	B1	B2	C	DD	E Dia \times Pitch	G	H	I	J	K	KA	L	0	R	$\begin{array}{\|c\|} \hline \text { S } \\ \hline \text { Dia } \times \text { Pitch } \\ \hline \end{array}$	U	V	X	Z	ZB
125	45	136	30	41	47	PT	$\mathrm{M} 30 \times 1.5$	35	58	32	10	32	20	17	117	15	M14×1.5	11	20	150	23	183
150	50	153	30	41	47	PT 1/2	$\mathrm{M} 30 \times 1.5$	40	60	32	8	40.5	25	24.5	13	15	16×1.5	12	26	175	258	20
200	63	15	46	70	67	PT 3/4	$\mathrm{M} 45 \times 1.5$	50	74	35	8	42	25	24	182	27	$\mathrm{M} 20 \times 1.5$	12	18	2	292	221

B

Code Tube I.D.	A	E	FB	LH	LL	LM	LR	LS	LT	LX	LY	ZT
125	45	$\mathrm{M} 30 \times 1.5$	16	85	48	17	117	150	6	162	232	231
150	50	$\mathrm{M} 30 \times 1.5$	18	96.5	55	20	134	175	9	184	263	255
200	63	$\mathrm{M} 45 \times 1.5$	24	132	60	30	150	226	10	245	274	281

FAC

Code Tube I.D.	A	E	F	FB	FD	FF	FR	FU	FX	J	V	ZF
125	45	$\mathrm{M} 30 \times 1.5$	20	18	27	183	123	222	155	10	20	166
150	50	$\mathrm{M} 30 \times 1.5$	20	18	27	230	134	275	185	8	32	181
200	63	$\mathrm{M} 45 \times 1.5$	25	24	42	280	150	335	225	8	11	187

FBC

Code	A	C	E	F	FB	FF	FR	FU	FX	ZF
Tube I.D.	45	47	$\mathrm{M} 30 \times 1.5$	20	18	183	123	222	155	203
125	45	47								
150	50	47	$\mathrm{M} 30 \times 1.5$	20	18	230	134	275	185	220
200	63	67	$\mathrm{M} 45 \times 1.5$	25	24	280	150	335	225	246

CA

Code	A	CA	CD	CL	CR	\mathbf{E}	\mathbf{O}	\mathbf{T}	\mathbf{X}	ZT
Tube I.D.	O	O								
125	45	$43_{-0.3}^{-0.1}$	$25^{\text {H10 }}$	65	24	$\mathrm{M} 30 \times 1.5$	117	15	150	248
150	50	$40_{-0.3}^{-0.1}$	$30^{\text {H10 }}$	78	27.5	$\mathrm{M} 30 \times 1.5$	134	20	175	278
200	63	$50_{-0.3}^{-0.1}$	$40^{\text {H10 }}$	85	40	$\mathrm{M} 45 \times 1.5$	182	25	226	306

CB

$\begin{gathered} \hline \text { Code } \\ \text { Tube I.D. } \\ \hline \end{gathered}$	A	CB	CD	CE	CL	CR	E	0	T	X	ZT
125	45	$43_{+0.1}^{+0.3}$	$25^{\text {H10 }}$	83	70	24	M 30×1.5	117	20	150	253
150	50	$40_{+0.1}^{+0.3}$	$30^{\text {H10 }}$	90	78	27.5	$\mathrm{M} 30 \times 1.5$	134	20	175	278
200	63	$50_{+0.1}^{+0.3}$	40^{H10}	100	85	40	$\mathrm{M} 45 \times 1.5$	182	25	226	306

TC

Code													
Tube I.D.	A	\mathbf{E}	TD	TF	TJ	TK	TL	TS	TT	TU	TX	V	ZB
125	45	$\mathrm{M} 30 \times 1.5$	$32^{\text {e8 }}$	115	68	40	40	164	176	256	172	17	183
150	50	$\mathrm{M} 30 \times 1.5$	$35^{\text {e8 }}$	123.5	76.5	41	40	194	200	280	198	16	200
200	63	$\mathrm{M} 45 \times 1.5$	45^{88}	144	77	59	45	255	265	355	255	8.5	221

TA

Code Tube I.D.	A	E	TD	TF	TJ	TK	TL	TS	TT	TU	TX	V	ZB
125	45	$\mathrm{M} 30 \times 1.5$	$32^{\text {e8 }}$	100	83	40	40	164	176	256	172	17	183
150	50	$\mathrm{M} 30 \times 1.5$	$35^{\text {e8 }}$	109	91	41	40	194	200	280	198	16	200
200	63	$\mathrm{M} 45 \times 1.5$	$45^{\text {e8 }}$	139.5	81.5	59	45	255	265	355	255	8.5	221

STANDARD CYLINDERS

TB

Code Tube I.D.	A	E	TD	TF	TJ	TK	TL	TS	TT	TU	TX	V	ZB
125	45	$\mathrm{M} 30 \times 1.5$	$32^{\text {e8 }}$	130	53	40	40	164	176	256	172	17	183
150	50	$\mathrm{M} 30 \times 1.5$	$35^{\text {e8 }}$	138	62	41	40	194	200	280	198	16	200
200	63	$\mathrm{M} 45 \times 1.5$	$45^{e 8}$	148.5	72.5	59	45	255	265	355	255	8.5	221

21

27

Y connector

connector

Code	B		C		CH		D		G		H		KK	L		M		$X^{\text {H10 }}$
Tube I.D.	Y	1	Y	1	Y	1	Y	1	Y	1	Y	1	Y	Y	1	Y	1	
40	$16_{+0.1}^{+0.3}$	$16_{-0.3}^{-0.1}$	25	20	38	-	26		¢24	\$24	25	25	M14 $\times 1.5$	55	55	68	68	$\phi 12^{+0.07}$
	$16_{+0.1}^{+0.3}$	$16_{-0.3}^{-0.1}$	27	22	38		30		\$28	\$28	27	27	M18×1.5	60	60	75	75	$\phi 12^{+0.07}$
80	$28_{+0.1}^{+0.3}$	$28_{-0.3}^{-0.1}$	32	27	55		38		¢36	¢36	32	32	M 22×1.5	71	71	90	90	$\phi 18^{+0.07}$
100	$30_{+0.1}^{+0.3}$	$30_{-0.3}^{-0.1}$	35	30	59		42		\$40	\$40	38	38	$\mathrm{M} 26 \times 1.5$	83	83	104	104	$\phi 20^{+0.08}$
125	$32_{+0.1}^{+0.3}$	$32_{-0.3}^{-0.1}$	35	40	76		58		¢45	¢49	38	32	M 30×1.5	80	80	109	109	$\phi 20^{+0.08}$
150	$40_{+0.1}^{+0.3}$	$40_{-0.3}^{-0.1}$	35	40	84		54		\$45	¢62	39	32	$\mathrm{M} 30 \times 1.5$	80	80	107	107	$\phi 25^{+0.08}$
200	$50_{+0.1}^{+0.3}$	$50_{-0.3}^{0.0 .1}$	67	67	100	\square	85	\square	\$70	¢70	54	44	$\mathrm{M} 45 \times 1.5$	125	125	167.5	167.5	$\phi 40^{+0.1}$

for Y \& I connector

Code Tube I.D.	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{D}^{\text {d9 }}$	E	F	Split pin
40 l 63	57	46	5.5	$\phi 12_{-0.09}^{-0.05}$	3.2	1.0	$3.2 \times 20 \mathrm{~L}$
80	78	64	7	$\phi 18_{-0.09}^{-0.05}$	4	1.2	$4 \times 25 \mathrm{~L}$
100	87	70	8.5	$\phi 20_{-0.12}^{-0.06}$	5	1.5	$5 \times 35 \mathrm{~L}$
125	100	83	8.5	$\phi 20_{-0.12}^{-0.06}$	5	1.5	$5 \times 35 \mathrm{~L}$
150	112	95	8.5	$\phi 25_{-0.12}^{-0.06}$	5	2.0	$5 \times 35 \mathrm{~L}$
200	115	105	5	$\phi 40_{-0.14}^{-0.08}$	5	2.0	$5 \times 55 \mathrm{~L}$

for CA \& CB

$\begin{aligned} & \hline \text { Code } \\ & \text { Tube I.D. } \\ & \hline \end{aligned}$	A	B	C	$\mathrm{D}^{\text {d9 }}$	E	F	Split pin
40	48	37	5.5	\$10 ${ }_{-0.09}^{-0.05}$	3.2	1.0	$3.2 \times 20 \mathrm{~L}$
50	57	46	5.5	\$12 ${ }_{-0.09}^{-0.05}$	3.2	1.0	$3.2 \times 20 \mathrm{~L}$
63	72	58	7	$\phi 16_{-0.09}^{-0.05}$	4	1.2	$4 \times 25 \mathrm{~L}$
80	87	70	8.5	$\phi_{20}{ }_{-0.12}^{-0.06}$	5	1.5	$5 \times 35 \mathrm{~L}$
100	93	76	8.5	$\phi 25_{-0.12}^{-0.06}$	5	1.5	$5 \times 35 \mathrm{~L}$
125	112	95	8.5	$\phi_{25}{ }_{-0.12}^{-0.06}$	5	1.5	$5 \times 35 \mathrm{~L}$
150	119	102	8.5	$\phi_{30}{ }_{-0.12}^{-0.06}$	5	2.0	$5 \times 40 \mathrm{~L}$
200	115	105	5	$\phi_{40}{ }_{-0.14}^{-0.08}$	5	2.0	$5 \times 55 \mathrm{~L}$

